pracovní návod s metodickým komentářem pro učitele připravila M. Najbertová

Měření ventilace plic metodou spirometrie

Cíle

Pomocí spirometrie změřit a určit základní parametry plicní ventilace.

odrobnější rozbor cílů

Naučit se pracovat se spirometrem. Odečíst ze spirografu hodnoty dílčích plicních objemů a vitální kapacity plic. Vypočítat vitální kapacitu plic, náležitou hodnotu vitální kapacity plic a celkovou kapacitu plic. Vysvětlit odchylky naměřených hodnot vitální kapacity plic od náležité hodnoty vitální kapacity. Uvést faktory, které mohou ovlivnit hodnoty sledovaných parametrů získané měřením.

Zadání úlohy

Pomocí spirometru získat grafický záznam plicní ventilace. Odečíst z grafu naměřené hodnoty dechového objemu (TV), inspiračního rezervního objemu (IRV), expiračního rezervního objemu (ERV) a vitální kapacity plic (VC). Vypočítat náležitou hodnotu vitální kapacity plic a určit, kolik procent činí hodnota VC získaná měřením. Určit hodnotu celkové kapacity plic (TLC). Porovnat naměřené hodnoty VC s hodnotami spolupracovníka a zdůvodnit odlišnosti.

Poznámka

Pro provedení tohoto experimentu je vhodná práce ve dvojicích, jedna osoba testuje, druhá je testována. Každý pak pracuje s vlastními daty.

Pomůcky

počítač s USB portem se software DataStudio, PAS-PORT USB Link (Interface), PASPORT senzor spirometr PS-2152, náustek na jedno použití, nosní spona, návod k senzoru, pracovní návod, pracovní list

Zařazení do výuky

G (SŠ): vzdělávací obor Člověk a příroda, obor Biologie – biologie člověka: žáci plní očekávané výstupy RVP - využívají znalosti o dýchací soustavě pro pochopení vztahů mezi procesy probíhajícími v lidském těle. Vhodné zařadit jako laboratorní cvičení v rámci povinného nebo volitelného předmětu zaměřeného na biologii člověka.

Ávaznost experimentů

Návaznost dalších experimentů na tento – "Faktory ovlivňující vitální kapacitu plic".

Sasová náročnost

Dvě vyučovací hodiny – příprava a vlastní měření asi 45 min, vyhodnocení a zpracování výsledků asi 45 min.

🔟 ezipředmětové vztahy

matematika – práce s grafy, základní matematické výpočty

Technická úskalí, tipy a triky

Měření lze provést i pomocí software SparkVue, které ale neumožňuje odečítání hodnot naměřených veličin v grafu. Zjištěné hodnoty jsou tak nepřesné. Je možné použít i Xplorer GLX PS-2002.

Teoretický úvod

Spirometrie je základní vyšetřovací metoda sloužící k posouzení funkčního stavu plic. Slouží k měření plicních objemů a ventilace. Je to způsob měření objemu vzduchu procházejícího plícemi, tedy toho, který při vdechu vstupuje do plic a při výdechu je vydechován. Měření plicního objemu nám umožní pochopit normální funkci plic, ale i chorobné stavy. Spirometrie slouží k hodnocení ventilace plic, a proto se uplatňuje jako vhodná diagnostická a monitorovací metoda pro posouzení a určení dechových obtíží, zejména u pacientů s chronickými plicními chorobami. Vyšetřovaná osoba je při tomto měření přímo spojena s přesným kalibrovaným plynoměrem – spirometrem, výsledkem je grafický záznam – **spirograf**. Grafickým záznamem spirometrie je například "**Závislost celkového objemu plic na čase**", který budeme v našem experimentu využívat.

Obr. 1: Závislost celkového objemu na čase

Nejvýznamnějším parametrem spirometrického měření je **vitální kapacita plic** (průměrná hodnota dospělé osoby je 3–51). *VC* je objem vzduchu vydechnutý po maximálním nádechu nebo nadechnutý po maximálním výdechu, její **hodnota je rovna součtu respiračního objemu, rezervního nádechového a rezervního výdechového objemu**.

$$VC = TV + IRV + ERV \tag{1}$$

Její velikost závisí na věku, pohlaví, výšce, váze a také tělesné konstituci. Jako **náležitá hodnota vitální kapacity** *NVC* je označována ta, která respektuje výšku, věk a pohlaví testované osoby. K výpočtu její hodnoty využíváme rovnici Cournanda a Beldwina:

$$NVC_{muži} = \left[27,63 - \left(0,112 \cdot v\check{e}k\right)\right] \cdot v\check{y}\check{s}ka \ v \ cm \tag{2}$$

$$NVC_{\underline{z}eny} = \left[21,78 - (0,112 \cdot v \check{e} k)\right] \cdot v \check{y} \check{s} ka \ v \ cm \tag{3}$$

Pro **posouzení plicní ventilace** je významná hodnota poměru *VC* a *NVC* podle vzorce

$$\frac{VC}{NVC} \cdot 100 \tag{4}$$

Dalšími významnými parametry získanými spirometrií jsou výše zmiňované **respirační (dechový) objem** *TV* (průměrná hodnota dospělé osoby je 0,51), **inspirační (nádechový) rezervní objem** *IRV* (průměrná hodnota 2,51) a **expirační (výdechový) rezervní objem** *ERV* (průměrná hodnota 1,21).

Spirometricky nelze měřit **reziduální (zbytkový) objem** RV (průměrná hodnota 1,2l) – objem, který zůstává v plicích po maximální expiraci a tvoří 20–30% celkové plicní kapacity. Z tohoto důvodu nelze měřit ani **celkovou plicní kapacitu** TLC – objem plic po maximálním nádechu. TLC je součtem VC a zbytkového objemu:

$$TLC = VC + RV \tag{5}$$

Průměrná hodnota pro dospělé se udává 61.

Motivace

Odhadněte, jaký objem vzduchu nadechnete či vydechnete při klidném dýchání. Kolikrát více vzduchu vyměníte při hlubokém dýchání oproti dýchání v klidu? Myslíte, že objem vzduchu nadechnutý při hlubokém nádechu je stejný jako při hlubokém výdechu?

Bezpečnost práce

Je třeba dodržovat zásady bezpečnosti a hygieny práce v biologické laboratoři a zásady bezpečné práce s elektrickými zařízeními. Pracovat pečlivě dle návodu práce.

Pokud testovaná osoba začne mít během měření potíže s dýcháním, testování ukončíme. Testována nesmí být osoba, která v současné době trpí respiračním onemocněním, jako je nachlazení nebo chřipka. Každá testovaná osoba používá svůj náustek.

Příprava úlohy

Nejprve zodpovíme úvodní motivační otázky. Prostudujeme pracovní návod a pracovní list. Připravíme měřicí techniku a zkusíme její funkčnost.

Postup práce

Vypracujeme slovníček pojmů v pracovním listu. Připravíme si pomůcky. Provedeme vlastní měření. Získaný grafický záznam uložíme jako soubor DataStudio (*.ds) k dalšímu zpracování. Graf vytiskneme – bude přílohou pracovního listu.

Provedeme analýzu dat v DataStudiu – odečteme hodnoty měřených veličin *TV*, *IRV*, *ERV* a *VC* z grafického záznamu. Odečtené hodnoty zapíšeme do tabulky v pracovním listu, v grafu vyznačíme sledované veličiny. Provedeme výpočet zadaných veličin, do tabulky doplníme zbývající hodnoty. Do tabulky zapíšeme i výsledky spolupracovníka a navzájem je porovnáme se svými. Zodpovíme zadané otázky v závěru pracovního listu.

Nastavení HW a SW

Připojíme spirometr PS-2152 do USB LINKu PS-2100A a propojíme s USB portem počítače.

Poznámka

Spirometr je přístroj určený pro výuku, není navržen pro lékařské použití. Testovaným osobám je třeba sdělit, že hodnocení výsledků je pouze orientační.

Poznámka

Připravíme pro žáky pracovní návody, pracovní listy, návod ke spirometru, dostatečný počet náustků. Zajistíme na počítačové síti místo pro ukládání naměřených dat k dalšímu zpracování. Zkontrolujeme funkčnost měřícího zařízení.

Je vhodné upozornit žáky na problematické momenty experimentu. Doporučujeme, aby si žáci nejprve prostudovali teoretický úvod a doplnili slovníček pojmů v pracovním listu (možno zadat i jako domácí úkol). Ověříme, že žáci přípravnou část úlohy opravdu vypracovali.

Obr. 2: Sestava měřicí techniky

Spustíme v počítači program DataStudio. V DataStudiu zvolíme variantu *Creative experiment*, program sám rozpozná senzor. V nabídce *Displays* je přednastaveno grafické a digitální zobrazení měřených dat *Digits*, toto digitální zobrazení měřených dat zrušíme. V nabídce *Data* zvolíme *Total Flow*. V nabídce *Setup* zvolíme *Sample Rate* 50 Hz. Program je připraven ke sběru dat.

Příprava měření

Práci provádíme ve **dvojicích**, jedna osoba je testována, druhá sbírá data, poté se v roli vymění. Každý zpracovává data vlastní.

Seznámíme se s postupem měření. Nasadíme náustek na hlavici senzoru – dbáme přitom na správnou polohu malého trnu vůči zarovnávacímu zářezu na hlavici, náustek držíme mimo dosah proudění vzduchu. Měřič musí být po celou dobu přípravy i sběru dat stejně orientován, v průběhu sběru s ním nepohybujeme.

Testovaná osoba zaujme vzpřímený sed.

Vlastní měření a záznam dat

Zabráníme tomu, aby testovaná osoba viděla v průběhu testování zobrazované údaje.

Tlačítkem *Start* zahájíme sběr dat. Na senzoru bliká **červený** indikátor *Wait,* po vyrovnání tlaku začne svítit **zelený** indikátor *Ready.* V tomto okamžiku je senzor připraven k měření.

Testovaná osoba drží náustek spirometru přímo v jedné ruce, umístí si zužující se konec náustku mezi přední zuby, aby rty náustek těsně obemkly a veškerý vzduch proudil skrz náustek, stiskne nos palcem a ukazováčkem (popř. si ucpe nos sponou). Klidně dýchá po dobu čtyř nádechů, poté provede maximální nádech s maximálním nuceným výdechem tak, aby byl co nejrychleji vydechnut veškerý vzduch. Nakonec provede dva klidné nádechy a výdechy.

Grafický záznam funkčního vyšetření plic uložíme z nabídky *File – Save Activity As …* jako soubor DataStudio (*.ds) na místo, které máme vyhrazeno k ukládání souborů.

Pro testování další osoby vyměníme náustek.

Poznámka

Testovaná osoba nesmí mít opasek. Testování může proběhnout i vestoje.

Poznámka

Vzduch vydechovaný z plic je při měření zaznamenán jako kladná hodnota, vdechovaný jako záporná hodnota.

Obr. 3: Měření spirometrem

Analýza naměřených dat

Vybereme grafický záznam pro analýzu dat: v levém panelu v nabídce *Displays* zvolíme *Graph*, v nabídce *Choose a Data Source* zvolíme *Total Flow* **Run 1**.

Vytiskneme grafický záznam nebo nakreslíme schéma grafu a vyznačíme do něj analyzované veličiny (*TV*, *IRV*, *ERV*, *VC*).

Z grafického záznamu zjistíme hodnoty pro **dechový objem** *TV*, **inspirační (nádechový) rezervní objem** *IRV*, **expirační (výdechový) rezervní objem** *ERV* a **vitální kapacitu plic** *VC*. Data odečítáme z části grafu maximálního nádechu a výdechu.

Analýza hodnoty dechovému objemu – postup:

Klikneme na *Smart Tool* na liště grafu. Zobrazený osní kříž v grafu uchopíme myší a se stisknutým levým tlačítkem myši přesuneme na vrcholový bod v části grafu dechový objem. Pohybujeme myší do strany čtverce, který je v osním kříži, dokud se neobjeví symbol trojúhelníku. Poté se stisknutým levým tlačítkem myši přetáhneme kurzor do sedlového bodu, uvolníme levé tlačítko myši. Na svislé ose odečteme hodnotu dechového objemu v litrech (s přesností na dvě desetinná místa).

Odečtení hodnot z grafu pro další sledované veličiny *IRV, ERV a VC* provedeme **stejným způsobem**.

Získané hodnoty všech veličin zapíšeme do tabulky v pracovním listu. Vypočteme vitální kapacitu plic podle vztahu (1) a porovnáme s naměřenou hodnotou.

Podle vzorce (Cournand a Beldwin, 1941) (2) nebo (3) vypočítáme hodnotu **náležité vitální kapacity** *NVC* podle pohlaví testované osoby (určení věku se odvíjí od data narození $\pm 0,5$ roku). Výpočtem získáme hodnotu *NVC* v ml, zapíšeme ji s přesností na 0,011 opět do tabulky. Porovnáme získané hodnoty *VC* a *NVC* pomocí vztahu (4).

Podle vzorce (5) vypočítáme *TLC*, získanou hodnotu zaznamenáme do tabulky.

Do tabulky zapíšeme hodnoty spolupracovníka, navzájem je porovnáme a zdůvodníme odlišnosti.

Informační zdroje

- AL], K. Bernášková ... [et], Redakce R. ROKYTA a Ilustrace L. D ILU-STRACE L. ŠŤASTNÁ. *Fyziologie: praktická cvičení a demonstrace*.
 vyd. Praha: Pro 3. lékařskou fakultu Univerzity Karlovy vydalo Psychiatrické centrum Praha, 2002. ISBN 80-851-2133-6.
- KOLEKTIV. *Spirometr PS-2152*. Roseville CA: Foothiltls Bird, 2012, ISBN 012-08856A.
- SILBERNAGL, Stefan a Agamemnon DESPOPOULOS. *Atlas fyziologie člověka*. 6. přeprac. a rozš. vyd. Praha: Grada, 2004, 435 s. ISBN 80-247-0630-X.
- VOKURKA, Martin. *Praktický slovník medicíny*. 5. rozš. vyd. Praha: Maxdorf, 1998, 490 s. ISBN 80-858-0081-0.
- Dýchání. [online]. [cit. 2012-04-25]. Dostupné z: http://ulb.upol.cz/ prednasky/ra011/dychani.pdf
- PASCO. *Products Pasco DT* [online]. [cit. 25. 4. 2012]. Dostupný na WWW: http://www.pasco.com/family/datastudio/index.cfm>.

Poznámka

Je nutné znát svou výšku.

Technická úskalí, tipy a triky

Graf není nutné tisknout, může být schematicky nakreslen a do něj zaneseny požadované údaje.

Hodnocení výsledků

Z naměřených hodnot *TV, IRV* a *ERV* vypočítají žáci hodnotu *VC*, která slouží ke stanovení *NVC* a *TLC*. Pro výpočet *TLC* je nutné zadat průměrnou hodnotu *RV* pro populaci. Žáci porovnají získané hodnoty *VC* a *NVC*. Zváží, které faktory mohou ovlivnit hodnoty naměřených veličin. Posoudí, zda se při opakovaných měřeních získají stejné hodnoty sledovaných veličin. Porovnají získané hodnoty ve skupině.

Syntéza a závěr

Navzájem porovnáme výsledky měření pracovních skupin, společně prodiskutujeme a případné odlišnosti zdůvodníme.

- PASCO. Návod k obsluze senzorů Pasport [online]. [cit. 25. 4. 2012]. Dostupný na WWW: http://www.pasco.cz/images/stories/Manualy/___PS-%2021XX%20Manual.pdf>.
- PASCO. *Manuál DT* [online]. [cit. 25. 4. 2012]. Dostupný na WWW: <http://www.pasco.cz/images/stories/Manualy/Manual___DS.pdf>.
- PASCO. Pasco [online]. [cit. 2012-04-25]. Dostupné z: www.pasco.cz
- PASCO. Pasco [online]. [cit. 2012-04-25]. Dostupné z: www.pasco.com
- VERNIER. *Vernier* [online]. [cit. 2012-04-25]. Dostupné z: www.vernier.cz